## M. TECH. IN WIRELESS AND MOBILE COMMUNICATIONS. EFFECTIVE FROM ACADEMIC YEAR 2017- 18 ADMITTED BATCH

#### COURSE STRUCTURE AND SYLLABUS

### I Semester

| Category     | Course Title                              | Int. marks | Ext. marks | L  | Т | Ρ | С  |
|--------------|-------------------------------------------|------------|------------|----|---|---|----|
| PC-1         | Wireless Communications & Networks        | 25         | 75         | 4  | 0 | 0 | 4  |
| PC-2         | Random Processes and Time Series Analysis | 25         | 75         | 4  | 0 | 0 | 4  |
| PC-3         | Advanced Data Communications              | 25         | 75         | 4  | 0 | 0 | 4  |
| PE-1         | Detection and Estimation Theory           | 25         | 75         | 3  | 0 | 0 | 3  |
|              | Radio Navigational Aids                   |            |            |    |   |   |    |
|              | Coding Theory and Techniques              |            |            |    |   |   |    |
| PE-2         | Voice over Internet Protocol              | 25         | 75         | 3  | 0 | 0 | 3  |
|              | Queuing Theory and Applications           |            |            |    |   |   |    |
|              | TCP/IP Internetworking                    |            |            |    |   |   |    |
| OE-1         | *Open Elective – I                        | 25         | 75         | 3  | 0 | 0 | 3  |
| Laboratory I | Wireless Communications and Networks Lab  | 25         | 75         | 0  | 0 | 3 | 2  |
| Seminar I    | Seminar                                   | 100        | 0          | 0  | 0 | 3 | 2  |
|              | Total                                     | 275        | 525        | 21 | 0 | 6 | 25 |

## **II Semester**

| Category      | Course Title                        | Int. marks | Ext. marks | L | Т | Ρ  | С |
|---------------|-------------------------------------|------------|------------|---|---|----|---|
| PC-4          | Advanced Communication Systems      | 25         | 75         | 4 | 0 | 0  | 4 |
| PC-5          | Spread Spectrum Communications      | 25         | 75         | 4 | 0 | 0  | 4 |
| PC-6          | Adhoc Wireless Networks             | 25         | 75         | 4 | 0 | 0  | 4 |
| PE-3          | Optical Communications and Networks | 25         | 75         | 3 | 0 | 0  | 3 |
|               | Wireless LANs and PANs              |            |            |   |   |    |   |
|               | Wireless Sensor Networks            |            |            |   |   |    |   |
| PE4           | Network Security and Cryptography   | 25         | 75         | 3 | 0 | 0  | 3 |
|               | Software Defined Radio              |            |            |   |   |    |   |
|               | 3G Networks                         |            |            |   |   |    |   |
| OE-2          | *Open Elective – II                 | 25         | 75         | 3 | 0 | 0  | 3 |
| Laboratory II | Advanced Communications Lab         | 25         | 75         | 0 | 0 | 3  | 2 |
| Seminar II    | Seminar                             | 100        | 0          | 0 | 0 | 3  | 2 |
|               | 275                                 | 525        | 21         | 0 | 6 | 25 |   |

#### **III Semester**

| Course Title            | Int.<br>marks | Ext.<br>marks | L | т | Р  | С  |
|-------------------------|---------------|---------------|---|---|----|----|
| Technical Paper Writing | 100           | 0             | 0 | 3 | 0  | 2  |
| Comprehensive Viva-Voce | 0             | 100           | 0 | 0 | 0  | 4  |
| Project work Review II  | 100           | 0             | 0 | 0 | 22 | 8  |
| Total                   | 200           | 100           | 0 | 3 | 22 | 14 |

#### **IV Semester**

| Course Title                   | Int.<br>marks | Ext.<br>marks | L | Т | Ρ  | С  |
|--------------------------------|---------------|---------------|---|---|----|----|
| Project work Review III        | 100           | 0             | 0 | 0 | 24 | 8  |
| Project Evaluation (Viva-Voce) | 0             | 100           | 0 | 0 | 0  | 16 |
| Total                          | 100           | 100           | 0 | 0 | 24 | 24 |

\*Open Elective subjects must be chosen from the list of open electives offered by OTHER departments.

# For Project review I, please refer 7.10 in R17 Academic Regulations.

### M. TECH. I YEAR I SEMESTER WIRELESS AND MOBILE COMMUNICATIONS

#### WIRELESS COMMUNICATIONS & NETWORKS (PC-1)

### UNIT -I

**The Cellular Concept-System Design Fundamentals:** Introduction, Frequency Reuse, Channel Assignment Strategies, Handoff Strategies- Prioritizing Handoffs, Practical Handoff Considerations, Interference and system capacity – Co channel Interference and system capacity, Channel planning for Wireless Systems, Adjacent Channel interference, Power Control for Reducing interference, Trunking and Grade of Service, Improving Coverage & Capacity in Cellular Systems- Cell Splitting, Sectoring.

#### UNIT –II

**Mobile Radio Propagation: Large-Scale Path Loss:** Introduction to Radio Wave Propagation, Free Space Propagation Model, Relating Power to Electric Field, The Three Basic Propagation Mechanisms, Reflection-Reflection from Dielectrics, Brewster Angle, Reflection from prefect conductors, Ground Reflection (Two-Ray) Model, Diffraction-Fresnel Zone Geometry, Knife-edge Diffraction Model, Multiple knife-edge Diffraction, Scattering, Outdoor Propagation Models- Longley-Ryce Model, Okumura Model, Hata Model, PCS Extension to Hata Model, Walfisch and Bertoni Model, Wideband PCS Microcell Model, Indoor Propagation Models-Partition Iosses (Same Floor), Partition Iosses between Floors, Log-distance path Ioss model, Ericsson Multiple Breakpoint Model, Attenuation Factor Model, Signal penetration into buildings, Ray Tracing and Site Specific Modeling.

#### UNIT –III

**Mobile Radio Propagation: Small –Scale Fading and Multipath:** Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke's model for flat fading, spectral shape due to Doppler spread in Clarke's model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

#### UNIT -IV

**Equalization and Diversity:** Introduction, Fundamentals of Equalization, Training A Generic Adaptive Equalizer, Equalizers in a communication Receiver, Linear Equalizers, Non linear Equalization-Decision Feedback Equalization (DFE), Maximum Likelihood Sequence Estimation (MLSE) Equalizer, Algorithms for adaptive equalization-Zero Forcing Algorithm, Least Mean Square Algorithm, Recursive least squares algorithm. Diversity Techniques-Derivation of selection Diversity improvement, Derivation of Maximal Ratio Combining improvement, Practical Space Diversity Consideration-Selection Diversity, Feedback or Scanning Diversity, Maximal Ratio Combining, Equal Gain Combining, Polarization Diversity, Frequency Diversity, Time Diversity, RAKE Receiver.

### UNIT -V

Wireless Networks: Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11, IEEE 802.11 Medium Access

Control, Comparision of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, HiperLan, WLL.

### TEXT BOOKS:

- 1. Theodore, S. Rappaport, "Wireless Communications, Principles, Practice", 2<sup>nd</sup> Ed., 2002, PHI.
- 2. Andrea Goldsmith, "Wireless Communications", 2005 Cambridge University Press.
- 3. KavehPahLaven and P. Krishna Murthy, "Principles of Wireless Networks ", 2002, PE
- 4. Gottapu Sasibhushana Rao, "Mobile Cellular Communication", Pearson Education, 2012.

- 1. Kamilo Feher, "Wireless Digital Communications", 1999, PHI.
- 2. William Stallings, "Wireless Communication and Networking", 2003, PHI.

### M. TECH. I YEAR I SEMESTER WIRELESS AND MOBILE COMMUNICATIONS

#### RANDOM PROCESSES AND TIME SERIES ANALYSIS (PC-2)

### UNIT -I

**Stationary Random Processes from a Probability Point of View:** Probability Density and Probability Distribution Functions of a Random Variable, Expected Value of Random Variable, Markov and Chebyshev Inequalities, Computer Methods for Generating Random Variables, Multidimensional Random variables, Chi-square tests of hypotheses concerning distribution.

#### UNIT -II

**Random Processes Analyzed in the Time Domain**: Continuous and Discrete Time, Stationarity, Auto Covariance and Auto Correlation functions, Continuity, differentiation, Integrals of Random Processes.

Some special cases: The Poisson process, the Normal (Gaussian) Process.

#### UNIT -III

**Random Processes Analyzed in the Frequency Domain**: The Fourier Transform, Spectral Density, The Cross Power Spectral Density.

Linear Systems with random input: Impulse response, Transfer function, the relation between the spectral density for the input and for the output

#### UNIT -IV

**Markov Chains:** Markov Processes: Discrete time Markov chains, state transition probability matrix, n-step state transition probability, transition diagrams, classification of states, limiting state probabilities, Continuous-time Markov chains, Gambler's ruin as a Markov chains

### UNIT -V

**Basic Queuing Theory**: Elements of a Queuing System, Little's Formula, M/M/1, Queue- Delay Distribution in M/M/1 System, M/M/1 System with Finite Capacity, M/G/1 Queueing system- Residual Service Time, Mean Delay in M/G/1 Systems.

#### **TEXT BOOKS:**

- 1. Peebles, P. Z, "Probability, Random Variables, and Random Signal Principles", 1993, Third Edition, McGraw-Hill
- 2. Oliver C. Ibe, "Fundamentals of Applied Probability and Random Processes", Elsevier, 2009
- 3. Alberto Leon-Garcia, "Probability and Random Processes for Electrical Engineering", 2<sup>nd</sup> Ed, Pearson

- 1. Athanasios Papoulis, S. Unnikrishna Pillai, "Probability, Random Variables and Stochastic Processes", TMH, 2008
- 2. Henry Stark, John W. Woods, "Probability and Random Processes with Applications to Signal Processing", 3<sup>rd</sup> Edition, Pearson
- 3. Roy D. Yates, David J. Goodman, "Probability and Stochastic Processes A Friendly Introduction for Electrical and Computer Engineers", John Wiley & Sons.

### M. TECH. I YEAR I SEMESTER WIRELESS AND MOBILE COMMUNICATIONS

#### **ADVANCED DATA COMMUNICATIONS (PC-3)**

Unit - I

Data Communications, Networks and Network Types, Internet History, Standards and Administration, Protocol Layering, TCP/IP protocol suite, OSI Model. Digital Data Transmission, DTE-DCE interface. **Data Link Layer:** Introduction, Data Link Layer, Nodes and Links, Services, Categories of Links, sub layers, Link Layer Addressing, Address Resolution Protocol.

#### Unit - II

**Error Detection and Correction**: Types of Errors, Redundancy, detection versus correction, Coding Block Coding: Error Detection, Vertical redundancy cheeks, longitudinal redundancy cheeks, Error Correction, Error correction single bit, Hamming code.

**Cyclic Codes**: Cyclic Redundancy Check, Polynomials, Cyclic Code Encoder Using Polynomials, Cyclic Code Analysis, Advantage of Cyclic Codes, Checksum

Data Link Control: DLC Services, Data Link Layer Protocols, HDLC, Point to Point Protocol

#### Unit - III

Switching: Introduction to Switching, Circuit Switched Networks, Packet Switching, Structure of switch

Multiplexing :Multiplexing, Frequency Division Multiplexing, Time Division Multiplexing.

**Connecting devices:**Passive Hubs, Repeaters, Active Hubs, Bridges, Two Layer Switches, Routers, Three Layer Switches, Gateway, Backbone Networks.

Wired LANS: Ethernet Protocol, Standard Ethernet, Fast Ethernet, Gigabit Ethernet, 10 Giga bit Ethernet

### Unit - IV

#### Media Access Control (MAC) Sub Layer

Random Access, ALOHA, Carrier Sense Multiple Access (CSMA), Carrier Sense Multiple Access with Collision Detection (CSMA/CD), Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), Controlled Access- Reservation, Polling- Token Passing, Channelization - Frequency Division Multiple Access (FDMA), Time - Division Multiple Access (TDMA), Code - Division Multiple Access (CDMA).

**Spectrum Spreading:** Spread Spectrum-Frequency Hopping Spread Spectrum and Direct Sequence Spread Spectrum.

#### Unit - V

**Networks Layer:** Packetizing, Routing and Forwarding, Packet Switching, Network Layer Performance, IPv4 Address, Address Space, Classful Addressing, Classless Addressing, Dynamic Host Configuration Protocol (DHCP), Network Address Resolution(NATF), Forwarding of IP Packets, Forwarding based on Destination Address, Forwarding based on Label, Routing as Packet Switches. **Unicast Routing** : Introduction, **Routing Algorithms**-Distance Vector Routing, Link State Routing, Path Vector Routing, **Unicast Routing Protocols**- Routing Information Protocol(RIP), Open Short Path First Version 4.

### TEXT BOOKS:

1. B. A. Forouzan, "Data Communications and Networking", 5<sup>th</sup>, 2013, TMH.

2. William Stallings, "Data and Computer Communications", 8<sup>th</sup> ed., 2007, PHI.

- Prakash C. Gupta, "Data Communications and Computer Networks", 2006, PHI.
   B. A. Forouzan, "Data Communications and Networking", 2<sup>nd</sup>, 2013, TMH.

### M. TECH. I YEAR I SEMESTER WIRELESS AND MOBILE COMMUNICATIONS

#### **DETECTION AND ESTIMATION THEORY (PE-1)**

### UNIT –I

**Random Processes:** Discrete Linear Models, Markov Sequences and Processes, Point Processes, and Gaussian Processes.

#### UNIT –II

**Detection Theory:** Basic Detection Problem, Maximum A posteriori Decision Rule, Minimum Probability of Error Classifier, Bayes Decision Rule, Multiple-Class Problem (Bayes)- minimum probability error with and without equal a priori probabilities, Neyman-Pearson Classifier, General Calculation of Probability of Error, General Gaussian Problem, Composite Hypotheses.

#### UNIT –III

**Linear Minimum Mean-Square Error Filtering:** Linear Minimum Mean Squared Error Estimators, Nonlinear Minimum Mean Squared Error Estimators. Innovations, Digital Wiener Filters with Stored Data, Real-time Digital Wiener Filters, Kalman Filters.

#### UNIT –IV

**Statistics:** Measurements, Nonparametric Estimators of Probability Distribution and Density Functions, Point Estimators of Parameters, Measures of the Quality of Estimators, Introduction to Interval Estimates, Distribution of Estimators, Tests of Hypotheses, Simple Linear Regression, Multiple Linear Regression.

#### UNIT –V

**Estimating the Parameters of Random Processes from Data:**Tests for Stationarity and Ergodicity, Model-free Estimation, Model-based Estimation of Autocorrelation Functions, Power Special Density Functions.

#### TEXT BOOKS:

- 1. K. Sam Shanmugan & A.M. Breipohl, "Random Signals: Detection, Estimation and Data Analysis", Wiley India Pvt. Ltd, 2011.
- 2. Lonnie C. Ludeman, "Random Processes: Filtering, Estimation and Detection", Wiley India Pvt. Ltd., 2010.

- 1. Steven.M.Kay, "Fundamentals of Statistical Signal Processing: Volume I Estimation Theory", Prentice Hall, USA, 1998.
- 2. Steven.M.Kay, "Fundamentals of Statistical Signal Processing: Volume I Detection Theory", Prentice Hall, USA, 1998.
- 3. Srinath, Rajasekaran, Viswanathan, "Introduction to Statistical Signal Processing with Applications", 2003, PHI.
- 4. Louis L.Scharf, 1991, "Statistical Signal Processing: Detection, Estimation and Time Series Analysis", Addison Wesley.
- Harry L. Van Trees, "Detection, Estimation and Modulation Theory: Part I", 2001, John Wiley & Sons, USA.
- Mischa Schwartz, Leonard Shaw, "Signal Processing: Discrete Spectral Analysis Detection & Estimation", 1975, McGraw Hill.

### M. TECH. I YEAR I SEMESTER WIRELESS AND MOBILE COMMUNICATIONS

#### RADIO NAVIGATIONAL AIDS (PE-1)

### UNIT –I

**Navigational Systems:** Review of Navigational Systems: Aircraft navigational system. Geometry of the earth.Navigation equation.Navigation errors.Radio navigation system types and Performance parameters.ILS System, Hyperbolic navigation systems, Loran, Omega, Decca Radio direction finding, DME.TACAN and VORTAC.

### UNIT –II

**Inertial Navigation**: Inertial navigation system. Sensing instruments: Accelerometer. Gyro- copes, Analytic and Gimbaled platforms. Mechanization.Error analysis, Alignment.

#### UNIT –III

**Global Positioning System (GPS) for Navigation:** Overview of GPS, Reference systems. Satellite orbits, Signal structure, Geometric dilution of precision (GDOP), or Precision dilution of recision (PDOP), Satellite ephemeris, Satellite clock, Ionospheric group delay. Tropospheric group delay, Multipath errors and Receiver measurement errors.

#### UNIT –IV

**Differential GPS and WAAS:** Standard and precise positioning service local area DGPS and Wide area DGPS errors. Wide Area Augmentation System (WAAS) architecture.Link budget and Data Capacity, Ranging function, Precision approach and error estimates.

### UNIT –V

**GPS Navigational Application:** General applications of GPS, DGPS, Marine. Air and Land Navigation, Surveying, Mapping and Geographical information systems, Military and Space.

### TEXT BOOKS:

- 1. Myron Kavton and Walter Friend, R, "Avionics Navigation Systems", Wiley, 1997
- 2. Parkinson B.W. Spilker, "Global Positioning System Theory and Applications", Progress in Astronautics, Vol. I and II, 1996.

- 1. Hoffman. B., Wellenhof. H. Lichtenegger and J. Collins, "GPS Theory and Practice", Springer Verlang Wien New York, 1992.
- 2. Elliot D. Kaplan, "Understanding GPS Principles and Applications", Artech House. Inc., 1996.
- 3. Lieck Alfred, "GPS Satellite Surveying", John Wiley, 1990.

### M. TECH. I YEAR I SEMESTER WIRELESS AND MOBILE COMMUNICATIONS

#### CODING THEORY AND TECHNIQUES (PE-1)

### UNIT – I

**Coding for Reliable Digital Transmission and storage:** Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.

**Linear Block Codes:** Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

#### UNIT - II

**Cyclic Codes:** Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding, Cyclic Hamming Codes, Shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

#### UNIT – III

**Convolution Codes:** Encoding of Convolution Codes, Structural and Distance Properties, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

#### UNIT – IV

**Turbo Codes:** LDPC Codes- Codes based on sparse graphs, Decoding for binary erasure channel, Log-likelihood algebra, Brief propagation, Product codes, Iterative decoding of product codes, Concatenated convolutional codes- Parallel concatenation, The UMTS Turbo code, Serial concatenation, Parallel concatenation, Turbo decoding

### UNIT - V

**Space-Time Codes:** Introduction, Digital modulation schemes, Diversity, Orthogonal space- Time Block codes, Alamouti's schemes, Extension to more than Two Transmit Antennas, Simulation Results, Spatial Multiplexing : General Concept, Iterative APP Preprocessing and Per-layer Decoding, Linear Multilayer Detection, Original BLAST Detection, QL Decomposition and Interface Cancellation, Performance of Multi – Layer Detection Schemes, Unified Description by Linear Dispersion Codes.

#### **TEXT BOOKS:**

- 1. Shu Lin, Daniel J.Costello, Jr, "Error Control Coding- Fundamentals and Applications", Prentice Hall, Inc.
- 2. Man Young Rhee, "Error Correcting Coding Theory", 1989, McGraw-Hill

- 1. Man Young Rhee, "Error Correcting Coding Theory"-1989, McGraw Hill Publishing.
- 2. Bernard Sklar, "Digital Communications-Fundamental and Application", PE.
- 3. John G. Proakis, "Digital Communications", 5<sup>th</sup> ed., 2008, TMH.
- 4. Salvatore Gravano, "Introduction to Error Control Codes", oxford
- 5. Todd K.Moon, "Error Correction Coding Mathematical Methods and Algorithms", 2006, Wiley India.
- 6. Ranjan Bose, "Information Theory, Coding and Cryptography", 2<sup>nd</sup> Edition, 2009, TMH.

### M. TECH. I YEAR I SEMESTER WIRELESS AND MOBILE COMMUNICATIONS

#### **VOICE OVER INTERNET PROTOCOL (PE-2)**

### UNIT –I

**Overview of IP Protocol Suite:** The Internet Protocol, The Transmission Control Protocol (TCP), The User Datagram Protocol (UDP), The Real-time Transport Protocol (RTP), IP multicast, IP version 6 (IP v6), Interworking IPv4 and IPv6, The VoIP Market, VoIP Challenges.

#### UNIT -II

**H.323 and H.245 Standards:** The H.323 Architecture, Call Signaling-Call Scenarios, H.245 Control Signaling Conference calls- The Decomposed Gateway.

#### UNIT –III

**The Session Initiation Protocol (SIP):** SIP architecture- Overview of SIP Messaging Syntax-Examples of SIP Message sequences- Redirect Servers- Proxy Servers. The Session Description Protocol (SDP)- Usage of SDP With SIP.

#### UNIT -IV

**Quality of Service (QoS):** Need for QOS – End-to-end QoS, Overview of QOS solutions- The Resource reservation Protocol (RSVP)-Diffserv- The Diffserv Architecture- Multi-protocol Label Switching (MPLS)- The MPLS Architecture- MPLS Traffic Engineering- Label Distribution Protocols and Constraint- Based Routing.

### UNIT -V

**VoIP and SS7:** The SS7 Protocol Suite- The Message Transfer Part (MTP), ISDN User Part (ISUP) and Signaling Connection Control Part (SCCP), SS7 Network Architecture- Signaling Points(SPs)-Single Transfer Point (STP), - Service Control Point(SCP)- Message Signal Units (MSUs)- SS7 Addressing, ISUP, Performance Requirements for SS7, Sigtran- Sigtran Architecture- SCTP- M3UA Operation- M2UA Operation- M2PA Operation- Interworking SS7 and VoIP Architectures-Interworking Soft switch and SS7- Interworking H.323 and SS7.

### TEXT BOOK:

1. Daniel Collins, "Carrier Grade Voice over IP", 2<sup>nd</sup> ed., TMH.

- 1. Nicholas Wittenberg ,"Understanding Voice over IP Technology", Cengage, 1<sup>st</sup> Ed., 2010.
- 2. Michael, F. Finnevan, "Voice Over WLANS The Complete Guide", Elsevier, 2008.

### M. TECH. I YEAR I SEMESTER WIRELESS AND MOBILE COMMUNICATIONS

#### **QUEUING THEORY AND APPLICATIONS (PE-2)**

### UNIT - I

Review of probability, Stochastic Processes, random variables, distributions, generating functions; Poisson, Markov, renewal and semi-Markov processes, and Markov Chains, Birth-Death Process

### UNIT - II

**Basic Queuing Theory:**An Introduction to Queues and Queuing Theory ,Characteristics of queuing systems, M/M/1 queuing system, Littles law, Reversibility and Burke's theorem, Markovian and non-Markovian queuing systems, embedded Markov chain applications to M/G/1, G/M/1 and related queuing systems;

#### UNIT - III

**Queuing Networks:** Fundamentals of Queuing Networks, Networks of queues, Open and Closed Queuing Networks, Open Networks of M/M/m type queues and Jackson's Theorem, MVA and Convolution Algorithm for Closed Networks, Approximate Models for Open and Closed Queuing Networks, Queues with vacations, priority queues, queues with modulated arrival process,

#### UNIT - IV

**Discrete time queuing Systems:** Introduction, Discrete time queuing systems, discrete time arrival process, Geome/Geom/m/N queuing system, Queuing on a Space division packet switch, Queuing on a single buffered banyan network

### UNIT - V

**Network traffic Modeling:** Introduction, Continuous time models, discrete time Models Solution methods, Burstiness, self similar traffic

### TEXT BOOKS:

- 1. D. Gross and C. Harris, "Fundamentals of Queuing Theory", 3rd Edition, Wiley, 1998. (WSE Edition, 2004).
- 2. T.G. Robertazzi, "Computer Networks and Systems Queuing Theory and Performance Evaluation", Springer 2000.

- 1. L. Kleinrock, "Queuing Systems", Vol. 1: Theory, Wiley, 1975.
- 2. E. Gelenbe and G. Pujolle, "Introduction to Queuing Networks", 2nd Edition, Wiley, 1998.
- 3. J. Medhi, "Stochastic Models in Queuing Theory", 2nd Edition, Academic Press, 2003. (Elsevier India Edition, 2006).
- 4. L. Kleinrock, "Queuing Systems", Volume 1: Theory, Wiley 1975.
- 5. R. Nelson, "Probability, Stochastic Processes, and Queuing Theory: The Mathematics of Computer Performance Modeling", Springer, 1995.

### M. TECH. I YEAR I SEMESTER WIRELESS AND MOBILE COMMUNICATIONS

#### TCP/IP INTERNETWORKING (PE-2)

### UNIT - I

**Network Models:** Layered Tasks, The OSI Model, Layers in OSI Model, TCP/IP Protocol suite, Addressing.

**Connecting devices:** Passive Hubs, Repeaters, Active Hubs, Bridges, Two Layer Switches, Routers, Three Layer Switches, Gateway, Backbone Networks.

#### UNIT - II

**Internetworking Concepts:** Principles of Internetworking, Connectionless Interconnection, Application Level Interconnection, Network Level Interconnection, Properties of the Internet, Internet Architecture, Interconnection through IP Routers

**TCP, UDP & IP:** TCP Services, TCP Features, Segment, A TCP Connection, Flow Control, Error Control, Congestion Control, Process to Process Communication, User Datagram, Checksum, UDP Operation, IP Datagram, Fragmentation, Options, IP Addressing: Classful Addressing, IPV6.

#### UNIT - III

**Congestion and Quality of Service:** Data Traffic, Congestion, Congestion Control, Congestion Control in TCP, Congestion Control in Frame Relay, Source Based Congestion Avoidance, DEC Bit Scheme, Quality of Service, Techniques to Improve QOS: Scheduling, Traffic Shaping, Admission Control, Resource Reservation, Integrated Services and Differentiated Services.

#### UNIT - IV

**Queue Management:** Concepts of Buffer Management, Drop Tail, Drop Front, Random Drop, Passive Buffer Management Schemes, Drawbacks of PQM, Active Queue Management: Early Random Drop, RED Algorithm.

### UNIT - V

**Stream Control Transmission Protocol:** SCTP Services, SCTP Features, Packet Format, Flow Control, Error Control, Congestion Control.

**Mobile Network Layer:** Entities and Terminology, IP Packet Delivery, Agents, Addressing, Agent Discovery, Registration, Tunneling and Encapsulating, Inefficiency in Mobile IP.

**Mobile Transport Layer :** Classical TCP Improvements, Indirect TCP, Snooping TCP, Mobile TCP, Fast Retransmit/Fast Recovery, Transmission, Timeout Freezing, Selective Retransmission, Transaction Oriented TCP.

### TEXT BOOKS:

- 1. Behrouz A Forouzan, "TCP/IP Protocol Suite", TMH, 3rd Edition
- 2. B.A. Forouzan, "Data communication & Networking", TMH, 4<sup>th</sup> Edition.

- 1. Mahbub Hasan & Raj Jain, "High performance TCP/IP Networking", PHI -2005
- 2. Douglas. E.Comer, "Internetworking with TCP/IP ", Volume I PHI
- 3. Larry L. Perterson and Bruce S. Davie , "Computer Networks- A Systems Approach", 2011, Morgan Kaufmann
- 4. Jochen Schiiler, "Mobile Communications", Pearson, 2nd Edition.

### M. TECH. I YEAR I SEMESTER WIRELESS AND MOBILE COMMUNICATIONS

#### WIRELESS COMMUNICATIONS AND NETWORKS LAB

#### Note:

- A. Minimum of 10 Experiments have to be conducted
- B. All the Experiments may be Conducted using Network Simulation software like NS-2/ NSG-2.1/ WireSHARK/ SDR etc..

Note: For Experiments 1 to 7 Performance may be evaluated through simulation by using the parameters Throughput, Packet Delivery Ratio, Delay etc.

- 1. Evaluate the performance of various LAN Topologies
- 2. Evaluate the performance of Drop Tail and RED queue management schemes
- 3. Evaluate the performance of CBQ and FQ Scheduling Mechanisms
- 4. Evaluate the performance of TCP and UDP Protocols
- 5. Evaluate the performance of TCP, New Reno and Vegas
- 6. Evaluate the performance of AODV, DSR and DSDV routing protocols
- 7. Evaluate the performance of IEEE 802.11 and IEEE 802.15.4
- 8. Capturing and Analysis of TCP and IP Packets
- 9. Simulation and Analysis of ICMP and IGMP Packets
- 10. Analyze the Protocols SCTP , ARP, NetBIOS, IPX VINES
- 11. Analysis of HTTP ,DNS and DHCP Protocols
- 12. Analysis of OFDM Spectrum
- 13. Analysis CDMA Downlink

## M. TECH. I YEAR I SEMESTER

## List of Open Electives Offered by Various Departments, Effective from AY 2017-18

| S. No | Name of the Department                                           | Open Elective (S) Offered for Other<br>Departments            |
|-------|------------------------------------------------------------------|---------------------------------------------------------------|
| 1     | Civil Engineering<br>(Open Elective – I)                         | Computer Oriented Numerical Methods                           |
| 2     | Electronics and Communication<br>Engineering (Open Elective – I) | Principles of Electronic Communications                       |
| 3     | Electrical and Electronics Engineering<br>(Open Elective – I)    | Renewable Energy Systems, Electrical<br>Installation & Safety |
| 4     | Mechanical Engineering<br>(Open Elective – I)                    | Optimization Techniques and Applications                      |
| 5     | Computer Science and Engineering<br>(Open Elective – I)          | Fundamentals of Cyber Security                                |

### **CIVIL ENGINEERING**

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

### COMPUTER ORIENTED NUMERICAL METHODS (Open Elective – 1)

**Course Objectives:** To impart knowledge about various methods of analysing linear equations and understand the different mathematical techniques.

**Course Outcomes:** The learner will be able to apply various mathematical techniques to Structural engineering problems.

### Unit - I:

Solutions of linear equations: Direct method – Cramer's rule, Guass – Elimination method- Gauss – Jordan elimination – Triangulation (LU Decomposition) method – Iterative methods Jacobi – Iteration method – Gauss – Siedel iteration, Successive over –relaxation method.

Eigen values and Eigen vectors: Jacobi method for symmetric matrices- Given's method for symmetric matrices-Householder's method for symmetric matrices-Rutishauser method of arbitrary matrices – Power method.

#### UNIT - II:

Interpolation: Linear Interpolation – Higher order Interpolation – Lagrange Interpolation – Interpolating polynomials using finites differences- Hermite Interpolation –piece-wise and spline Interpolation.

#### Unit - III

Finite Difference and their Applications: Introduction- Differentiation formulas by Interpolating parabolas – Backward and forward and central differences- Derivation of Differentiation formulae using Taylor series- Boundary conditions- Beam deflection – Solution of characteristic value problems- Richardson's extrapolation- Use of unevenly spaced pivotal points- Integration formulae by interpolating parabolas- Numerical solution to spatial differential equations – Applications to Simply Supported Beams, Columns and Rectangular Plates.

### UNIT - IV

Numerical Differentiation: Difference methods based on undetermined coefficients- optimum choice of step length– Partial differentiation.

Numerical Integration: Method based on interpolation-method based on undetermined coefficient – Gauss – Lagrange interpolation method- Radaua integration method- composite integration method – Double integration using Trapezoidal and Simpson's method – New Marks Method and Application to Beams – Calculation of Slopes and Deflections.

### UNIT - V

Ordinary Differential Equation: Euler's method – Backward Euler method – Midpoint method – single step method, Taylor's series method- Boundary value problems.

### **TEXT BOOKS:**

- 1. Numerical methods for scientific and engineering computations. M.K. Jain-S.R.K. Iyengar R.K. Jain Willey Eastern Limited
- 2. Numerical Methods for Engineering Problems, N. Krishna Raju, KU Muthu, Mac-Millan publishers

- 1. Introductory Numerical Methods by S.S. Shastry, PHI Learning Pvt. Ltd.
- 2. Applied numerical analysis by Curtis I. Gerala- Addission Wasley published campus.
- 3. Numerical methods for Engineers Stevan C. Chopra, Raymond P. Canal Mc. Graw Hill Book Company.
- 4. C Language and Numerical methods by C. Xavier New age international publisher.
- 5. Computer based numerical analysis by Dr. M. Shanta Kumar, Khanna Book publishers, New Delhi.

### ELECTRONICS AND COMMUNICATION ENGINEERING

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

## PRINCIPLES OF ELECTRONIC COMMUNICATIONS (Open Elective -1)

## UNIT - I

**Introduction:** Need for Modulation, Frequency translation, Electromagnetic spectrum, Gain, Attenuation and decibels.

### UNIT - II

**Simple description on Modulation:** Analog Modulation-AM, FM, Pulse Modulation-PAM, PWM, PCM, Digital Modulation Techniques-ASK, FSK, PSK, QPSK modulation and demodulation schemes.

### UNIT - III

**Telecommunication Systems:** Telephones Telephone system, Paging systems, Internet Telephony. **Networking and Local Area Networks:** Network fundamentals, LAN hardware, Ethernet LANs, Token Ring LAN.

### UNIT - IV

**Satellite Communication:** Satellite Orbits, satellite communication systems, satellite subsystems, Ground Stations Satellite Applications, Global Positioning systems.

**Optical Communication:** Optical Principles, Optical Communication Systems, Fiber –Optic Cables, Optical Transmitters & Receivers, Wavelength Division Multiplexing.

### UNIT - V

**Cellular and Mobile Communications:** Cellular telephone systems, AMPS, GSM, CDMA, WCDMA. **Wireless Technologies:** Wireless LAN, PANs and Bluetooth, ZigBee and Mesh Wireless networks, Wimax and MANs, Infrared wireless, RFID communication, UWB.

### **TEXT BOOKS**

- 1. Louis E. Frenzel, "Principles of Electronic Communication Systems", 3<sup>rd</sup> Ed., McGraw Hill publications, 2008.
- 2. Kennady, Davis, "Electronic Communications systems", 4Ed., TMH, 1999

- 1. Tarmo Anttalainen, "Introduction to Telecommunications Network Engineering", Artech House Telecommunications Library.
- 2. Theodore Rappaport, "Wireless Communications-Principles and practice", Prentice Hall, 2002.
- 3. Roger L. Freeman, "Fundamentals of Telecommunications", 2 Ed. Wiley publications.
- 4. Wayne Tomasi, "Introduction to data communications and networking", Pearson Education, 2005.

## ELECTRICAL AND ELECTRONICS ENGINEERING

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

## RENEWABLE ENERGY SYSTEMS (Open Elective - I)

## **Course Objectives:**

- To recognize the awareness of energy conservation in students
- To identify the use of renewable energy sources for electrical power generation
- To collect different energy storage methods
- To detect about environmental effects of energy conversion

Course Outcomes: Upon the completion of this course, the student will be able to

- find different renewable energy sources to produce electrical power
- estimate the use of conventional energy sources to produce electrical energy
- role-play the fact that the conventional energy resources are depleted
- arrange Store energy and to avoid the environmental pollution

### Unit-I:

Photo voltaic power generation ,spectral distribution of energy in solar radiation, solar cell configurations, voltage developed by solar cell, photo current and load current, practical solar cell performance, commercial photo voltaic systems, test specifications for PV systems, applications of super conducting materials in electrical equipment systems.

### Unit-II:

Principles of MHD power generation, ideal MHD generator performance, practical MHD generator, MHD technology.

**Wind Energy conversion:** Power from wind, properties of air and wind, types of wind Turbines, operating characteristics.

## Unit-III:

Tides and tidal power stations, modes of operation, tidal project examples, turbines and generators for tidal power generation.

**Wave energy conversion:** properties of waves and power content, vertex motion of Waves, device applications. Types of ocean thermal energy conversion systems Application of OTEC systems examples,

### Unit-IV:

**Miscellaneous energy conversion systems:** coal gasification and liquefaction, biomass conversion, geothermal energy, thermo electric energy conversion, principles of EMF generation, description of fuel cells, Co-generation and energy storage, combined cycle co-generation, energy storage. **Global energy position and environmental effects:** energy units, global energy position.

## Unit-V:

Types of fuel cells,  $H_2$ - $O_2$  Fuel cells, Application of fuel cells – Batteries, Description of batteries, Battery application for large power. Environmental effects of energy conversion systems, pollution from coal and preventive measures steam stations and pollution, pollution free energy systems.

## **TEXT BOOKS:**

1. "Energy conversion systems" by Rakosh das Begamudre, New age International publishers, New Delhi - 2000. 2. "Renewable Energy Resources" by John Twidell and Tony Weir, 2<sup>nd</sup> Edition, Fspon & Co.

- 1. "Understanding Renewable Energy Systems" by Volker Quaschning, 2005, UK.
- 2. "Renewable Energy Systems-Advanced Conversion, Technologies & Applications" by Faner Lin Luo Honer Ye, CRC press, Taylor & Francis group.

### ELECTRICAL INSTALLATION & SAFETY (Open Elective - I)

Course Objectives: The course should enable the students to:

- Understand Electrical Wiring with IE rules. Residential Building Electrification, Electrification of commercial Installation, Electrification of factory unit Installation
- Protection against electric shocks, Safety Measures & Prevention of Accidents

Course Outcomes: The students will be able to:

- Acquire the knowledge of different types wires and wiring systems, I.E. rules and Electric supply act.
- Explain the importance of earthling, rating of wires & cables, procedures for residential, commercial electrification.
- Able to estimate the length of wire, cable, conduit, earth wire, and earthing and also cost of residential, commercial electrification.

### Unit-I: Electrical Wiring with IE rules.

Introduction, Define types of wires; Different types of wiring system; Comparison of different types of wiring; Different types and specifications of wiring materials; Accessories and wiring tools; Prepare I.E. rules for wiring, including Electricity supply act 2003& 2005;

### **Unit-II : Residential Building Electrification**

General rules guidelines for wiring of Residential Installation and positioning of equipment's; Principles of circuit design in lighting and power circuits.; Procedures for designing the circuits and deciding the number of circuits.; Method of drawing single line diagram.; Selection of type of wiring and rating of wires &cables.; Load calculations and selection of size of conductor.; Selection of rating of main switch, distributions board, protective switchgear ELCB and MCB and wiring accessories.; Earthing of Residential Installation.

### **Unit-III: Electrification of commercial Installation**

Concept of commercial Installation.; Differentiate between electrification of Residential and commercial Installation.; Fundamental considerations for planning of an electrical Installation system for commercial building.; Design considerations of electrical Installation system for commercial building.; Load calculations & selection of size of service connection and nature of supply.; Deciding the size of cables, bus bar and bus bar chambers.; Mounting arrangements and positioning of switch boards, distribution boards main switch etc.; Earthing of the electrical Installation; Selection of type wire, wiring system & layout.

### Unit-IV: Electrification of factory unit Installation

Concept of Industrial load; Concept of Motor wiring circuit and single line diagram. Important guidelines about power wiring and Motor wiring.; Design consideration of Electrical Installation in small Industry/Factory/workshop.; Motor current calculations.; Selection and rating of wire, cable size & conduct.; Deciding fuse rating, starter, distribution boards main switch etc.; Deciding the cable route, determination of length of wire, cable, conduit, earth wire, and earthing.

### Unit-V: Protection against electric shocks

Electric shock- General , Protection against direct contact, Protection against indirect contact, Protection of goods in case of insulation fault, Implementation of the TT system, Implementation of the TN system, Implementation of the IT system. Protection provided for enclosed equipment: codes IP

and IK, IP code definition, Elements of the IP Code and their meanings, IK Code definition, IP and IK code specifications for distribution switchboards

**Safety Measures & Prevention of Accidents-** Concept of electrical safety, electrical accidents, its causes & preventions.; Safety signs and symbols used in industry.; Electrical shocks and factors affecting the severity of it, method of rescuing electrocuted person & different methods of artificial respiration.; Electrical safety as per I.E. Rules 1956.; Do's & don'ts regarding safety while working on electrical installations.; Concept of Permit system, its preparation & regulation for attending to electrical work.; Precautions to be taken to avoid fire due to electrical reasons, operation of fire extinguishers, types of fire extinguishers.

## **TEXT BOOKS:**

- 1. Dr. S.L. Uppal of Electrical Wiring, Estimating and Costing, New Age International (p) Limited, New Delhi.
- 2. Electrical Design Estimating and Costing, K.B. Raina & S.K. Battacharya, new age international (p) limited. Publishers
- 3. Electrical estimating & costing 2<sup>nd</sup> addition By Surjit singh
- 4. Electrical Installation Estimating & Costing, Gupta, J.B., S. K. Kataria & Sons, New Delhi

### **MECHANICAL ENGINEERING**

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

## M. Tech. I Year - I Sem.

## OPTIMIZATION TECHNIQUES AND APPLICATIONS (Open Elective – 1)

## UNIT- I

**Single Variable Non-Linear Unconstrained Optimization:** One dimensional Optimization methods:-Uni-modal function, elimination methods, ,, Fibonacci method, golden section method, interpolation methods – quadratic & cubic interpolation methods.

## UNIT-II

Multi variable non-linear unconstrained optimization: Direct search method – Univariant method - pattern search methods – Powell's- Hook -Jeeves, Rosenbrock search methods- gradient methods, gradient of function, steepest decent method, Fletcher Reeves method, variable metric method.

## UNIT- III

**Linear Programming**: Formulation – Sensitivity analysis. Change in the constraints, cost coefficients, coefficients of the constraints, addition and deletion of variable, constraints. **Simulation** – Introduction – Types- steps – application – inventory – queuing systems

## UNIT -IV

**Integer Programming**: Introduction – formulation – Gomory cutting plane algorithm – Zero or one algorithm, branch and bound method

## Stochastic programming:

Basic concepts of probability theory, random variables- distributions-mean, variance, correlation, co variance, joint probability distribution- stochastic linear, dynamic programming.

## UNIT- V

**Geometric Programming:** Polynomials – arithmetic - geometric inequality – unconstrained G.P-constrained G.P (<= TYPE ONLY)

**Non-traditional optimization Techniques:** Genetic Algorithms-Steps-Solving simple problems-Comparitions of similarities and dissimilarities between traditional and non-traditional techniques-Particle Swarm Optimization (PSO)- Steps(Just understanding)-Simulated Annealing-Steps-Simple problems.

- 1. Optimization theory & Applications / S.S. Rao / New Age International.
- 2. Engineering Optimization-Kalyan Deb/ PHI
- 3. Introductory to operation Research / Kasan & Kumar / Springar
- 4. Optimization Techniques theory and practice / M.C.Joshi, K.M. Moudgalya/ Narosa
- 5. Publications
- 6. Operation Research / H.A. Taha /TMH
- 7. Optimization in operations research / R.L Rardin
- 8. Optimization Techniques /Benugundu & Chandraputla / Pearson Asia

### COMPUTER SCIENCE AND ENGINEERING

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

## FUNDAMENTALS OF CYBER SECURITY (Open Elective - I)

### **Course Objective:**

This course is aimed to generate interest and awareness in cyber security field, which is important in the world of information security due to the wide variety of computer crimes that take place in cyber space. The course deals with various types of attacks framed by an attacker, and the security which need to be implemented at various levels along with latest trends in cyber security.

#### UNIT-I:

Cyber Security Basics – Sphere, Terminology, Vulnerability in the Cyber Structure and Infrastructure, Cyber threats and Weaponry, Cyber Defense, Cyber Attack Detection and Prevention, Information Security Testing, Cyber Security Investigation/assessment, Cyber-Deterrence.

### UNIT-II:

Cyber Crimes and Cyber Laws – Introduction, IT laws & Cyber Crimes – Internet, Hacking, Password Cracking, Viruses, Virus Attacks, Pornography, Software Privacy, Intellectual Property, Legal System of Information Technology, Social Engineering, Phishing, Denial of Service attack, Malicious Code, Mail Bombs, Worms, Logic Bombs, Botnet, Trojan, Bug Exploits.

#### UNIT-III:

**End point Security:** Desktop and Laptop Security, Cell Phone and PDA Security, Bluetooth Security, Patch and Vulnerability Management, Password Management, Security for Full Virtualization Technologies, Media Sanitization, Security Radio Frequency Identification (RFID) Systems. **Network Security:** Intrusion Detection & Prevention Systems, Firewalls and Firewall Policy, Computer Security Log Management, Enterprise Tele work and Remote Access Security, Securing WiMAX Wireless Communication. **Web Security:** Server Security, Web authentication, SSL and SET, Securing Public Web Servers, Secure Deployment of IPv6, Secure Domain name System (DNS) Deployment, SSL VPNs, Unified Threat Management (UTM).;

### UNIT-IV:

**Application Security:** Active Content and Mobile Code, E-commerce Security, Email Security (PGP, S/MIME), Web Security, Web Application Security, OWASP; **Data Security:** Data Management, Database Security, Data Encryption, Data Leakage Prevention (DLP), Data Destruction; **Software Security:** Software Flaws, Malware, Software based Attacks; Insecurity in Software: SRE, Software Tamper Resistance, DRM, Software Development.

**Operating System Security:** Security Functions, Software Updates and Patches, OS Integrity Checks, Account management, Antivirus Software, Security in Ordinary Operating Systems, Design of Secure OS, OS hardening, Configuring the OS for security, Security kernels, Secure Virtual machine Systems, Trusted Operating System, NGSCB.

### UNIT-V:

Recent Trends in Cyber Security – Zero – day Malware, Trojan Wars, New Ways to Monetize Non-Financial Data, Fraud-as-a-service, Out-of-band Methods forcing Cybercriminals to Innovate, The Rise of Hactivism, Attacks in mobile devices, social media and cloud computing; Insider threats, Increased regulatory security, Cyber-Terrorism, Cyber –War and Cyber-Peace. Topological Vulnerability Analysis, Cyber Situational Awareness, Secure Composition of Systems, Autonomic Recovery, Secure Data Centers, Cloud Computing Security, Privacy in location-Based Applications.

## **TEXT BOOKS:**

- 1. Cyber Security, Edward Amoroso, kindle Edition, 2007
- 2. Cyber Security ,Understanding Cyber crimes, Computer Forensics and Legal Perspectives, Sunita Belapure and Nina Godbole, Wiley India Pvt Ltd. 2011

- 1. Computer Security, Dirter Gollmann, John Wiley & Sons Publication, 2011
- 2. Cyber Security Essentials, James Graham, Richard Howrad, Ryan Olson, CRC Press, 2011

### ADVANCED COMMUNICATION SYSTEMS (PC - 4)

### UNIT - I

**Spread Spectrum Communications:** Spreading sequences- Properties of Spreading Sequences, Pseudo- noise sequence, Gold sequences, Kasami sequences, Walsh Sequences, Orthogonal Variable Spreading Factor Sequences, Barker Sequence, Complementary Codes

Direct sequence spread spectrum – DS-CDMA Model, Conventional receiver, Rake Receiver, Synchronization in CDMA, Power Control, Soft handoff, Multiuser detection – Optimum multiuser detector, Liner multiuser detection.

### UNIT - II

**Orthogonal Frequency Division Multiplexing:** Basic Principles of Orthogonality, Single vs Multicarrier Systems, OFDM Block Diagram and Its Explanation, OFDM Signal Mathematical Representation, Selection parameter for Modulation, Pulse shaping in OFDM Signal and Spectral Efficiency, Window in OFDM Signal and Spectrum, Synchronization in OFDM, Pilot Insert in OFDM Transmission and Channel Estimation, Amplitude Limitations in OFDM, FFT Point Selection Constraints in OFDM, CDMA vs OFDM, Hybrid OFDM.

### UNIT - III

**MIMO Systems:** Introduction, Space Diversity and System Based on Space Diversity, Smart Antenna system and MIMO, MIMO Based System Architecture, MIMO Exploits Multipath, Space – Time Processing, Antenna Consideration for MIMO, MIMO Channel Modelling, MIMO Channel Measurement, MIMO Channel Capacity, Cyclic Delay Diversity (CDD), Space Time Coding, Advantages and Applications of MIMO in Present Context, MIMO Applications in 3G Wireless System and Beyond, MIMO-OFDM

### UNIT - IV

**SONET/SDH:** Architecture, SONET Layers, SONET Frames, STS Multiplexing, SONET Networks, Virtual Tributaries.

**ATM:** Overview, Virtual channels, Virtual paths, VP and VC switching, ATM cells, Header format, Generic flow control, Header error control, Transmission of ATM cells, Adaptation layer, AAL services and protocols.

### UNIT - V

**ATM Traffic and congestion Control:** Requirements for ATM Traffic and Congestion Control, Cell-Delay Variation, ATM Service Categories, Traffic and Congestion Control Framework, Traffic Control, Congestion Control

### TEXT BOOKS:

- 1. Gary J. Mullett, "Introduction to Wireless Telecommunications Systems and Networks", CENGAGE
- 2. Upena Dalal, "Wireless Communication", Oxford University Press, 2009
- 3. William Stallings, "ISDN and Broadband ISDN with Frame Relay and ATM" Prentice Hall, 4th edition

- Ke-Lin Du & M N S Swamy, "Wireless Communication System", Cambridge University Press, 2010
- 2. Behrouz A Forouzan, "Data Communications and Networking", 4<sup>th</sup> Edition, McGraw Hill.
- 3. Gottapu Sasibhusan Rao, "Mobile Cellular Communication", PEARSON

### **SPREAD SPECTRUM COMMUNICATIONS (PC - 5)**

#### UNIT - I

**Introduction to Spread Spectrum Systems:** Fundamental Concepts of Spread Spectrum Systems, Pseudo Noise Sequences, Direct Sequence Spread Spectrum, Frequency Hop Spread Spectrum, Hybrid Direct Sequence Frequency Hop Spread Spectrum, Code Division Multiple Access.

**Binary Shift Register Sequences for Spread Spectrum Systems:** Introduction, Definitions, Mathematical Background and Sequence Generator Fundamentals, Maximal Length Sequences, Gold Codes.

### UNIT - II

**Code Tracking Loops:** Introduction, Optimum Tracking of Wideband Signals, Base Band Delay-Lock Tracking Loop, Tau-Dither Non- Coherent Tracking Loop, Double Dither Non-Coherent Tracking Loop.

### UNIT - III

**Initial Synchronization of the Receiver Spreading Code:** Introduction, Problem Definition and the Optimum Synchronizer, Serial Search Synchronization Techniques, Synchronization using a Matched Filter, Synchronization by Estimated the Received Spreading Code.

### UNIT - IV

**Cellular Code Division Multiple Access (CDMA) Principles:** Introduction, Wide Band Mobile Channel, the Cellular CDMA System, Single User Receiver in a Multi User Channel, CDMA System Capacity.

**Multi-User Detection in CDMA Cellular Radio:** Optimal Multi-User Detection, Linear Suboptimal Detectors, Interference Combat Detection Schemes, Interference Cancellation Techniques.

### UNIT - V

Performance of Spread Spectrum Systems in Jamming Environments: Spread Spectrum
 Communication System Model, Performance of Spread Spectrum Systems without Coding.
 Performance of Spread Spectrum Systems with Forward Error Correction: Elementary Block
 Coding Concepts, Optimum Decoding Rule, Calculation of Error Probability, Elementary Convolution
 Coding Concepts, Viterbi Algorithm, Decoding and Bit-Error Rate.

### TEXT BOOKS:

- 1. Rodger E Ziemer, Roger L. Peterson and David E Borth, "Introduction to Spread Spectrum Communication", Pearson, 1st Edition, 1995.
- 2. Mosa Ali Abu-Rgheff "Introduction to CDMA Wireless Communications", Elsevier Publications, 2008.

- 1. George R. Cooper, Clare D. Mc Gillem "Modern Communication and Spread Spectrum," McGraw Hill, 1986.
- 2. Andrew j. Viterbi "CDMA: Principles of spread spectrum communication," Pearson Education, 1<sup>st</sup> Edition, 1995.
- 3. Kamilo Feher, "Wireless Digital Communications", PHI, 2009.
- 4. Andrew Richardson, "WCDMA Design Handbook", Cambridge University Press, 2005.
- 5. Steve Lee, "Spread Spectrum CDMA", McGraw Hill, 2002.

### ADHOC WIRELESS NETWORKS (PC - 6)

### UNIT - I

**Wireless Local Area Networks:** Introduction, wireless LAN Topologies, Wireless LAN Requirements, Physical Layer- Infrared Physical Layer, Microwave based Physical Layer Alternatives, Medium Access Control Layer- HIPERLAN 1 Sublayer, IEEE 802.11 MAC Sublayer and Latest Developments-802.11a, 802.11b, 802.11g

**Personal Area Networks:** Introduction to PAN technology and Applications, Bluetooth - specifications, Radio Channel, Piconets and Scatternets, Inquiry, Paging and Link Establishment, Packet Format, Link Types, Power Management, Security, Home RF -Physical and MAC Layer

### UNIT - II

**MAC Protocols:** Introduction, Issues in Designing a MAC protocol for Ad Hoc Wireless Networks, Design goals of a MAC Protocol for Ad Hoc Wireless Networks, Classifications of MAC Protocols, Contention - Based Protocols, Contention - Based Protocols with reservation Mechanisms, Contention – Based MAC Protocols with Scheduling Mechanisms, MAC Protocols that use Directional Antennas, Other MAC Protocols.

### UNIT - III

**Routing Protocols:** Introduction, Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks, Classification of Routing Protocols, Table –Driven Routing Protocols, On – Demand Routing Protocols, Hybrid Routing Protocols, Routing Protocols with Efficient Flooding Mechanisms, Hierarchical Routing Protocols, Power – Aware Routing Protocols.

### UNIT – IV

**Transport Layer Protocols:** Introduction, Issues in Designing a Transport Layer Protocol for Ad Hoc Wireless Networks, Design Goals of a Transport Layer Protocol for Ad Hoc Wireless Networks, Classification of Transport Layer Solutions, TCP Over Ad Hoc Wireless Networks, Other Transport Layer Protocol for Ad Hoc Wireless Networks.

### UNIT – V

**Quality of Service in Ad Hoc Wireless Networks:** Introduction, Real Time Traffic Support in Ad Hoc Wireless Networks, QoS Parameters in Ad Hoc Wireless Network, Issues and Challenges in providing QoS in Ad Hoc Wireless Networks, Classification of QoS Solutions: MAC Layer Solutions, Cluster TDMA, IEEE 802.11e, DBASE, Network Layer Solutions, QoS Routing Protocols, Ticket Based QoS Routing Protocol, Predictive Location Based QoS routing protocol, Trigger Based Distributed QoS Routing Protocol, QoS enabled AODV Routing Protocol, Bandwidth QoS Routing Protocol, On Demand QoS Routing Protocol, On Demand Link-State Multipath QoS Routing Protocol, Asynchronous Slot Allocation Strategies. QoS Frameworks for Ad Hoc Wireless Networks.

### TEXT BOOKS:

- 1. C. Siva Ram Murthy and B.S.Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols", 2004, PHI.
- 2. P Nicopolitidis and M S Obaidat, "Wireless Networks", Wiley India Edition 2003.

- 1. Roy Blake, "Wireless Communication Technology", CENGAGE, 2012
- 2. Jagannathan Sarangapani, "Wireless Ad- hoc and Sensor Networks: Protocols, Performance and Control" CRC Press.

### **OPTICAL COMMUNICATIONS AND NETWORKS (PE - 3)**

### UNIT - I

**Optical Fibers: Structures, waveguiding and Fabrication:** Nature of Light, Basic optical laws and definitions, Single mode fibers, Graded index fiber structure, Attenuation, Signal Dispersion in fibers. **Optical Sources**- LEDs, Laser Diodes, Line Coding.

### UNIT - II

**Photodetectors**: Photo detector Noise, Detector Response Time, Avalanche Multiplication Noise. **Optical Receiver Operation**: Fundamental receiver operation, Digital receiver performance, Eye diagrams.

WDM Concepts and Components: Passive optical Couplers, Isolators and Circulators

### UNIT - III

**Digital Links:** Point to point links, power penalties, error control, Coherent detection, Differential Quadrature Phase Shift Keying.

**Analog Links:** Carrier to noise ration, Multichannel Transmission Techniques, RF over Fiber, Radio over fiber links, Microwave Photonics.

### UNIT - IV

**Optical Networks:** Network Concepts, Network Topologies, SONET/SDH, High speed lightwave links, Optical add/ Drop Multiplexing, Optical Switching, WDM Network, Passive Optical Networks, IP Over DWDM, Optical Ethernet, Mitigation of Transmission Impairments

### UNIT - V

**Performance Measurement and Monitoring:** Measurement standards, Basic Test Equipment, Optical power measurement, Optical fiber characterization, Eye diagram tests, optical time domain reflectometer, optical performance monitoring, and optical fiber system performance measurements.

### TEXTBOOK:

1. Gerd Keiser, "Optical Fiber Communications", 5<sup>th</sup> Edition, Mc Graw Hill.

### WIRELESS LANS AND PANS (PE - 3)

#### UNIT – I

**Wireless System & Random Access Protocols:** Introduction, First and Second Generation Cellular Systems, Cellular Communications from 1G to 3G, Wireless 4G systems, The Wireless Spectrum; Random Access Methods: Pure ALOHA, Slotted ALOHA, Carrier Sense Multiple Access (CSMA), Carrier Sense Multiple Access with Collision Detection (CSMA/CD), Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).

### UNIT – II

**Wireless LANs:** Introduction, importance of Wireless LANs, WLAN Topologies, Transmission Techniques: Wired Networks, Wireless Networks, comparison of wired and Wireless LANs; WLAN Technologies: Infrared technology, UHF narrowband technology, Spread Spectrum technology

#### UNIT – III

**The IEEE 802.11 Standard for Wireless LANs:** Network Architecture, Physical layer, The Medium Access Control Layer; MAC Layer issues: Hidden Terminal Problem, Reliability, Collision avoidance, Congestion avoidance, Congestion control, Security, The IEEE 802.11e MAC protocol

#### UNIT – IV

**Wireless PANs:** Introduction, importance of Wireless PANs, The Bluetooth technology: history and applications, technical overview, the Bluetooth specifications, piconet synchronization and Bluetooth clocks, Master-Slave Switch; Bluetooth security; Enhancements to Bluetooth: Bluetooth interference issues, Intra and Inter Piconet scheduling, Bridge selection, Traffic Engineering, QoS and Dynamics Slot Assignment, Scatternet formation.

#### UNIT – V

**The IEEE 802.15 working Group for WPANs:** The IEEE 802.15.3, The IEEE 802.15.4, ZigBee Technology, ZigBee components and network topologies, The IEEE 802.15.4 LR-WPAN Device architecture: Physical Layer, Data Link Layer, The Network Layer, Applications; IEEE 802.15.3a Ultra wideband.

#### **TEXT BOOKS:**

- 1. Carlos de Morais Cordeiro and Dharma Prakash Agrawal, "Ad Hoc and Sensor Networks", World Scientific, 2011.
- 2. Vijay K.Garg, "Wireless Communications and Networking", Morgan Kaufmann Publishers, 2009.

- 1. Kaveh Pahlaram, Prashant Krishnamurthy, "Wireless Networks", PHI, 2002.
- 2. Marks Ciampor, Jeorge Olenewa, "Wireless Communication", Cengage Learning, 2007.

### WIRELESS SENSOR NETWORKS (PE - 3)

#### UNIT - I

**Introduction:** Components of a wireless sensor node, Motivation for a Network of Wireless Sensor Nodes, Classification of sensor networks, Characteristics of wireless sensor networks, Challenges of wireless sensor networks, Comparison between wireless sensor networks and wireless mesh networks, Limitations in wireless sensor networks, Design challenges, Hardware architecture, Applications : Structural Health Monitoring, Traffic Control, Health Care, .Pipeline Monitoring, Precision Agriculture, Active Volcano, Underground Mining

**Node Architecture:** The Sensing Subsystem, the Processor Subsystem, Communication Interfaces, Prototypes. **Operating Systems:** Functional Aspects, Nonfunctional Aspects, Prototypes, Evaluation

#### UNIT - II

**Basic Architectural Framework:** Physical Layer, Basic Components, Source Encoding, Channel Encoding, Modulation

**Medium Access Control**: Wireless MAC Protocols, Characteristics of MAC Protocols in Sensor Networks, Contention-Free MAC Protocols, Contention-Based MAC Protocols, Hybrid MAC Protocols

#### UNIT - III

**Network Layer:** Routing Metrics, Flooding and Gossiping, Data-Centric Routing, Proactive Routing, On-Demand Routing, Hierarchical Routing, Location-Based Routing, QoS-Based Routing Protocols **Node and Network Management:** Power Management, Local Power Management aspects, Dynamic Power Management, Conceptual Architecture

### UNIT - IV

**Time Synchronization:** Clocks and the Synchronization Problem, Time Synchronization in Wireless Sensor Networks, Basics of Time Synchronization, Time Synchronization Protocols **Localization:** Ranging Techniques, Range-Based Localization, Range-Free Localization, Event-Driven Localization

### UNIT - V

**Security:** Fundamentals of Network Security, Challenges of Security in Wireless Sensor Networks, Security Attacks in Sensor Networks, Protocols and Mechanisms for Security, IEEE 802.15.4 and Zig Bee Security

### TEXT BOOKS:

- 1. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice", Wiley 2010
- 2. Mohammad S. Obaidat, Sudip Misra, "Principles of Wireless Sensor Networks", Cambridge, 2014

- 1. Ian F. Akyildiz, Mehmet Can Vuran, "Wireless Sensor Networks", Wiley 2010
- 2. C S Raghavendra, K M Sivalingam, Taieb Znati, "Wireless Sensor Networks", Springer, 2010
- 3. C. Sivarm murthy & B.S. Manoj, "Adhoc Wireless Networks", PHI-2004
- 4. FEI HU., XIAOJUN CAO, "Wireless Sensor Networks", CRC Press, 2013
- 5. Feng ZHAO, Leonidas GUIBAS, "Wireless Sensor Networks", ELSEVIER , 2004

### NETWORK SECURITY AND CRYPTOGRAPHY (PE - 4)

#### UNIT - I

**Introduction:** Attacks, Services and Mechanisms, Security attacks, Security services, A Model for Internetwork security, Classical Techniques: Conventional Encryption model, Steganography, Classical Encryption Techniques.

**Modern Techniques:** Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Block Cipher Design Principles.

### UNIT - II

**Encryption Algorithms:** Triple DES, International Data Encryption algorithm, Blowfish, RC5, Characteristics of Advanced Symmetric block cifers.

**Conventional Encryption:** Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation.

### UNIT - III

**Public Key Cryptography:** Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Elliptic Curve Cryptograpy.

**Number Theory:** Prime and Relatively prime numbers, Modular arithmetic, Fermat's and Euler's theorems, Testing for primality, Euclid's Algorithm, the Chinese remainder theorem, Discrete logarithms.

### UNIT - IV

**Message Authentication and Hash Functions:** Authentication requirements and functions, Message Authentication, Hash functions, Security of Hash functions and MACs.

Hash and Mac Algorithms: MD File, Message digest Algorithm, Secure Hash Algorithm.

Digital signatures and Authentication protocols: Digital signatures, Authentication Protocols, Digital signature standards.

Authentication Applications: Kerberos, Electronic Mail Security: Pretty Good Privacy, S/MIME.

### UNIT – V

**IP Security:** Overview, Architecture, Authentication, Encapsulating Security Payload, Key Management. Web Security: Web Security requirements, Secure sockets layer and Transport layer security, Secure Electronic Transaction.

Intruders, Viruses and Worms: Intruders, Viruses and Related threats.

Fire Walls: Fire wall Design Principles, Trusted systems.

### TEXT BOOKS:

- 1. William Stallings, "Cryptography and Network Security: Principles and Practice", Pearson Education.
- 2. William Stallings, "Network Security Essentials -Applications and Standards", Pearson Education.

- 1. Eric Maiwald, "Fundamentals of Network Security", Dreamtech press
- 2. Charlie Kaufman, Radia Perlman and Mike Speciner, "Network Security Private Communication in a Public World", Pearson/PHI.
- 3. Principles of Information Security, Whitman, Thomson.
- 4. Robert Bragg, Mark Rhodes, "Network Security: The complete reference", TMH
- 5. Buchmann, "Introduction to Cryptography", Springer.

### SOFTWARE DEFINED RADIO (PE - 4)

### UNIT - I:

**Introduction:** The Need for Software Radios, What is Software Radio, Characteristics and benefits of software radio- Design Principles of Software Radio, RF Implementation issues- The Purpose of RF Front – End, Dynamic Range- The Principal Challenge of Receiver Design – RF Receiver Front- End Topologies- Enhanced Flexibility of the RF Chain with Software Radios- Importance of the Components to Overall Performance- Transmitter Architectures and Their Issues- Noise and Distortion in the RF Chain, ADC and DAC Distortion.

### UNIT - II:

**Profile and Radio Resource Management:** Communication Profiles- Introduction, Communication Profiles, Terminal Profile, Service Profile, Network Profile, User Profile, Communication Profile Architecture, Profile Data Structure, XML Structure, Distribution of Profile Data, Access to Profile Data, Management of Communication Profiles, Communication Classmarks, Dynamic Classmarks for Reconfigurable Terminals, Compression and Coding, Meta Profile Data

#### UNIT - III:

**Radio Resource Management in Heterogeneous Networks:** Introduction, Definition of Radio Resource Management, Radio Resource Units over RRM Phases, RRM Challenges and Approaches, RRM Modelling and Investigation Approaches, Investigations of JRRM in Heterogeneous Networks, Measuring Gain in the Upper Bound Due to JRRM, Circuit-Switched System, Packet-Switched System, Functions and Principles of JRRM, General Architecture of JRRM, Detailed RRM Functions in Sub-Networks and Overall Systems

### UNIT - IV:

**Reconfiguration of the Network Elements:** Introduction, Reconfiguration of Base Stations and Mobile Terminals, Abstract Modelling of Reconfigurable Devices, the Role of Local Intelligence in Reconfiguration, Performance Issues, Classification and Rating of Reconfigurable Hardware, Processing Elements, Connection Elements, Global Interconnect Networks, Hierarchical Interconnect Networks, Installing a New Configuration, Applying Reconfiguration Strategies, Reconfiguration Based on Comparison, Resource Recycling, Flexible Workload Management at the Physical Layer, Optimised Reconfiguration, Optimisation Parameters and Algorithms, Optimization Algorithms, Specific Reconfiguration Requirements, Reconfiguring Base Stations, Reconfiguring Mobile Terminals

### UNIT - V:

**Object – Oriented Representation of Radios and Network Resources:** Networks- Object Oriented Programming- Object Brokers- Mobile Application Environments- Joint Tactical Radio System.

**Case Studies in Software Radio Design:** Introduction and Historical Perspective, SPEAK easy-JTRS, Wireless Information Transfer System, SDR-3000 Digital Transceiver Subsystem, Spectrum Ware, CHARIOT.

### TEXT BOOKS:

- 1. Markus Dillinger, Kambiz Madani, "Software Defined Radio Architecture System and Functions", WILEY 2003
- 2. Walter Tuttle Bee, "Software Defined Radio: Enabling Technologies", 2002, Wiley Publications.

- 1. Jeffrey H. Reed, "Software Radio: A Modern Approach to Radio Engineering", 2002, PEA Publication.
- 2. Paul Burns, "Software Defined Radio for 3G", 2002, Artech House.
- 3. Markus Dillinger, Kambiz Madani, Nancy Alonistioti, "Software Defined Radio: Architectures, Systems and Functions", 2003, Wiley.
- 4. Joseph Mitola, "Software Radio Architecture: Object Oriented Approaches to wireless System Engineering", 2000, John Wiley & Sons.

### 3G NETWORKS (PE - 4)

### UNIT - I

**GSM Fundamentals:** General Architecture, Mobility Management, GSM Air Interface, Timing Advance, Initial Connection Procedure, Protocols and Signaling, GSM and Signaling Systems.

**General Packet Radio Service:** General Architecture, GPRS Network Elements, Network Interfaces, GPRS Air Interface, GPRS Protocols.

### UNIT - II

**Introduction:** Second Generation Mobile Networks, 2.5 Generation Mobile Networks, International Mobile, Third Generation Partnership Program (3GPP)

**Principles of WCDMA:** Requirements for 3<sup>rd</sup> Generation Air Interface, Schemes for Radio Access, WCDMA Overview, Spreading and De-Spreading, Scrambling, Rake Receiver

### UNIT - III

**UMTS Network Architecture:** Basic Structure of UMTS Network, Access Stratum and Non-access Stratum, Hierarchical Network Organization, Addresses and Identifiers, Service Aspects, Service Classification, Quality of Service (QoS) Architecture, UMTS QoS Classes.

**User Equipment:** Components of User Equipment, Interfaces of User Equipment, UE Functions, UE Protocols, Classification of UE.

Access Network: Access Network Entities, Network Interfaces, Radio Interface Protocol Architecture, UTRAN Protocol Architecture, Functions.

### UNIT - IV

**Core Network:** Entities Common to CS and PS Domain, Entities Specific to CS Domain, Entities Specific to the PS Domain, Service Specific Entities of the Core Network, CS Domain Protocol Architecture, PS Domain Protocol Architecture, Core Network Functions.

### UNIT - V

**IP Applications for GPRS/UMTS :** IP Protocol Suite Overview, IP Routing, TCP and Congestion Control, TCP Optimization for the Air, IP for GPRS and UMTS R99, IP based QoS for UMTS Networks.

### TEXT BOOKS:

- 1. Jeffrey Bannister, Paul Mather, Sebastian Coope, "Convergence Technologies for 3G Networks-IP, UMTS, EGPRS and ATM", John Wiley & Sons.
- Procedures Sumith Kaseara, Nishit Narang, "3G Networks Architecture, Protocols", Tata McGraw Hill

- 1. Clint Smith, Daniel Collins, "3G wireless Networks", McGraw-Hill-2002.
- 2. Zheng, "Wireless Networking", complete by ISBN 9789351071563, First Indian reprint 2014., Elsevier publication
- 3. Hendrik Berndt, "Towards 4G Technologies: Services with Initiative", John Wiley & Sons
- 4. Savo G. Glisic, "Advanced Wireless Networks: 4G Technologies", John Wiley & Sons

### ADVANCED COMMUNICATIONS LAB

### Note:

- A. Minimum of 10 Experiments have to be conducted
- B. All Experiments may be Simulated using MATLAB and to be verified using related training kits.
- 1. Determination of output of convolutional Encoder for a given sequence
- 2. Determination of output of convolutional Decoder for a given sequence
- 3. Efficiency of DS Spread- Spectrum Technique
- 4. Simulation of Frequency Hopping (FH) Spread- Spectrum
- 5. Implementation of Matched Filters.
- 6. Optimum receiver for the AWGN channel.
- 7. Measurement of effect of Inter Symbol Interference..
- 8. Simulation of PSK system with M=4
- 9. Simulation of DPSK system with M=4
- 10. Design of FSK system
- 11. BPSK Modulation and Demodulation techniques
- 12. QPSK Modulation and Demodulation techniques
- 13. DQPSK Modulation and Demodulation techniques
- 14. 8-QAM Modulation and Demodulation techniques
- 15. OFDM Transceiver design
- 16. Performance evaluation of simulated CDMA system

#### M. TECH. I YEAR II SEMESTER

### List of Open Electives Offered by Various Departments, Effective from AY 2017 - 18

| S. No | Name of the Department                                   | Open Elective (S) Offered for Other<br>Departments       |
|-------|----------------------------------------------------------|----------------------------------------------------------|
| 1     | Civil Engineering                                        | <ol> <li>Finite Element Method</li> </ol>                |
|       | (Open Elective – II)                                     | 2. Optimization Techniques                               |
| 2     | Electronics and Communication                            | 1. Industrial Instrumentation                            |
|       | Engineering (Open Elective – II)                         | 2. Principles of Computer Communications<br>and Networks |
| 3     | Electrical and Electronics Engineering                   | 1. Energy From Waste                                     |
|       | (Open Elective – II)                                     | <ol><li>Distributed Generation and Microgrid</li></ol>   |
|       |                                                          | <ol><li>Reliability Engineering</li></ol>                |
| 4     | Mechanical Engineering                                   | 1. Engineering Research Methodology                      |
|       | (Open Elective – II)                                     |                                                          |
| 5     | Computer Science and Engineering<br>(Open Elective – II) | 1. Machine Learning                                      |

\*Open Elective subject must be chosen from the list of open electives offered by OTHER departments.

Ex: A M.Tech ECE student cannot take Open Elective – II offered by ECE Dept, but can select from open electives offered by OTHER departments.

### **CIVIL ENGINEERING**

#### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

#### FINITE ELEMENT METHOD (Open Elective – II)

**Course Objectives:** To impart knowledge about various finite element techniques and development of finite element code.

**Course Outcome:** The learner will be able to solve continuum problems using finite element analysis.

#### UNIT - I

Introduction: Concepts of FEM - steps involved - merits and demerits - energy principles -

Discretization - Raleigh - Ritz method of functional approximation.

Principles of Elasticity: Stress equations - strain displacement relationships in matrix form plane stress, plane strain and axi-symmetric bodies of revolution with axi-symmetric loading.

#### UNIT - II

One dimensional FEM: Stiffness matrix for beam and bar elements - shape functions for 1-D elements. Two dimensional FEM: Different types of elements for plane stress and plane strain analysis displacement models - generalized coordinates - shape functions - convergent and compatibility requirements - geometric invariance - natural coordinate system - area and volume coordinates generation of element stiffness and nodal load matrices

#### UNIT - III

Isoparametric formulation:Concept - different isoparametric elements for 2D analysis -formulation of 4noded and 8-noded isoparametric quadrilateral elements - Lagrange elements - serendipity elements. Axi Symmetric Analysis:bodies of revolution - axi symmetric modeling - strain displacement relationship - formulation of axi symmetric elements.

Three dimensional FEM:Different 3-D elements-strain-displacement relationship –formulation of hexahedral and isoparametric solid element.

#### UNIT - IV

Introduction to Finite Element Analysis of Plates:Basic theory of plate bending - thin plate theory - stress resultants - Mindlin's approximations - formulation of 4-noded isoperimetric quadrilateral plate element – Shell Element.

#### UNIT - V

Introduction to non – linear finite analysis – basic methods – application to Special structures.

#### TEXT BOOKS:

- 1. A First Course in a Finite Element by Daryl L .Logan, CL Engineers.
- 2. Concepts and Applications of Finite Element Analysis by Robert D.Cook, DavidS. Malkus and Michael E. Plesha, John Wiley & Sons.

- 1. Introduction to Finite element Method by Tirupathi Chandra Patla and Belugunudu
- 2. Finite element Methods by OC Zienkiewicz
- 3. Finite element analysis, theory and progarmming by GS Krishna Murthy.
- 4. Introduction to Finite element Method by JN Reddy.

### **CIVIL ENGINEERING**

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

### **OPTIMIZATION TECHNIQUES (Open Elective – II)**

**Course Objectives:** To understand the theory of optimization methods and algorithms developed for solving various types of optimization problems

**Course Outcomes:** The student will be able to understand the basic principles of optimization, and in a position to formulate optimization models for a wide range of civil engineering problems and able to solve them.

### Unit-I

**Linear Programming:** Introduction and need for optimization in engineering design, formulating linear programs, graphical solution of linear programs, special cases of linear programming.

### UNIT - II

**The Simplex Method:** Converting a problem to standard form, the theory of the simplex method, the simplex algorithm, special situations in the simplex algorithm, obtaining initial feasible solution.

### UNIT - III

**Duality and Sensitivity Analysis:** Sensitivity analysis, shadow prices, dual of a normal linear program, duality theorems, dual simplex method. Integer Programming: Formulating integer programming problems, the branch-and-bound algorithm for pure integer programs, the branch-and-bound algorithm for mixed integer programs.

#### UNIT - IV

**Non-linear Programming:** Introduction to non-linear programming (NLP), Convex and concave functions, NLP with one variable, Line search algorithms, Multivariable unconstrained problems, constrained problems, Lagrange Multiplier, The Karush-Kuhn-Tucker (KKT) conditions, the method of steepest ascent, convex combination method, penalty function, Quadratic programming,

### UNIT - V

**Dynamic programming:** Evolutionary algorithms: Genetic Algorithm, concepts of multiobjective optimization, Markov Process, Queuing Models.

### TEXT BOOK:

1. S.S. Rao, Engineering Optimization: Theory and Practice, Wiley & Sons, New Jersey, 2009.

- 1. F.H. Hiller and G.J. Liberman, Introduction to Operations Research, Tata-McGraw-Hill, 2010.
- W.L. Winston, Operations Research: Applications and Algorithm, 4th Edition, Cengage Learning, 1994.
- 3. K.Deb, Optimization for Engineering Design, Prentice Hall, 2013.
- 4. M.C. Joshi and K.M. Moudgalay, Optimization: Theory and Practice, Narosa, 2004.
- 5. K. Deb, Multi-Objective Optimization using evolutionary algorithms, John Wiley and Sons, 2009.

#### ELECTRONICS AND COMMUNICATION ENGINEERING

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

#### INDUSTRIAL INSTRUMENTATION (Open Elective – II)

#### UNIT - I

**METROLOGY, VELOCITY AND ACCELERATION MEASUREMENT:** Measurement of length -Gauge blocks – Plainness – Area using Simpson's rule, Plain meter – Diameter – Roughness – Angle using Bevel protractor, sine bars and Clinometer – Mechanical, Electrical, Optical and Pneumatic Comparators. Optical Methods for length and distance measurements using Optical flats and Michelson Interferometer.

Relative velocity – Translational and Rotational velocity measurements – Revolution counters and Timers - Magnetic and Photoelectric pulse counting stroboscopic methods. Accelerometers-different types, Gyroscopes-applications.

### UNIT - II

**FORCE AND PRESSURE MEASUREMENT:** Force measurement – Different methods –Gyroscopic Force Measurement – Vibrating wire Force transducer. Basics of Pressure measurement –Manometer types – Force-Balance and Vibrating Cylinder Transducers – High and Low Pressure measurement – McLeod Gauge, Knudsen Gauge, Momentum Transfer Gauge, Thermal Conductivity Gauge, Ionization Gauge, Dual Gauge Techniques, Deadweight Gauges, Hydrostatic Pressure Measurement

#### UNIT - III

**FLOW MEASUREMENT AND LEVEL MEASUREMENT:** Flow Meters- Head type, Area type (Rota meter), electromagnetic type, Positive displacement type, mass flow meter, ultrasonic type, vertex shedding type, Hotwire anemometer type, Laser Doppler Velocity-meter. Basic Level measurements – Direct, Indirect, Pressure, Buoyancy, Weight, Capacitive Probe methods

#### UNIT - IV

**DENSITY, VISCOSITY AND OTHER MEASUREMENTS:** Density measurements – Strain Gauge load cell method – Buoyancy method - Air pressure balance method – Gamma ray method – Vibrating probe method. Units of Viscosity, specific gravity scales used in Petroleum Industries, Different Methods of measuring consistency and Viscosity –Two float viscorator –Industrial consistency meter. Sound-Level Meters, Microphones, Humidity Measurement

### UNIT - V

**CALIBRATION AND INTERFACING:** Calibration using Master Sensors, Interfacing of Force, Pressure, Velocity, Acceleration, Flow, Density and Viscosity Sensors, Variable Frequency Drive

#### TEXT BOOKS:

- 1. Doeblin E.O., "Measurement Systems Applications and Design", 4<sup>th</sup> Edition, McGraw Hill International, 1990.
- 2. Patranabis D, "Principles of Industrial Instrumentation", TMH. End edition 1997

- 1. Considine D. M., "Process Instruments and Control Handbook", 4<sup>th</sup> Edition, McGraw Hill International, 1993
- 2. Jain R.K., "Mechanical and Industrial Measurements", Khanna Publications.

### ELECTRONICS AND COMMUNICATION ENGINEERING

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

#### PRINCIPLES OF COMPUTER COMMUNICATIONS AND NETWORKS (Open Elective – II)

#### Prerequisite: Nil

#### **Course Objectives:**

- To understand the concept of computer communication.
- To learn about the networking concept, layered protocols.
- To understand various communications concepts.
- To get the knowledge of various networking equipment.

#### Course Outcomes: The student:

- Can get the knowledge of networking of computers, data transmission between computers.
- Will have the exposure about the various communication concepts.
- Will get awareness about the structure and equipment of computer network structures.

#### UNIT - I

**Overview of Computer Communications and Networking**: Introduction to Computer Communications and Networking, Introduction to Computer Network, Types of Computer Networks, Network Addressing, Routing, Reliability, Interoperability and Security, Network Standards, The Telephone System and Data Communications.

#### UNIT - II

**Essential Terms and Concepts**: Computer Applications and application protocols, Computer Communications and Networking models, Communication Service Methods and data transmission modes, analog and Digital Communications, Speed and capacity of a Communication Channel, Multiplexing and switching, Network architecture and the OSI reference model.

#### UNIT - III

**Analog and Digital Communication Concepts:** Representing data as analog signals, representing data as digital signals, data rate and bandwidth reduction, Digital Carrier Systems.

#### UNIT - IV

**Physical and data link layer Concepts**: The Physical and Electrical Characteristics of wire, Copper media, fiber optic media, wireless Communications. Introduction to data link Layer, the logical link control and medium access control sub-layers.

#### UNIT - V

**Network Hardware Components:** Introduction to Connectors, Transreceivers and media convertors, repeaters, network interference cards and PC cards, bridges, switches, switches Vs Routers.

#### TEXT BOOKS:

1. Computer Communications and Networking Technologies, Michel A. Gallo and William H. Hancock, Thomson Brooks / Cole.

#### **REFERENCE BOOKS:**

1. Principles of Computer Networks and Communications, M. Barry Dumas, Morris Schwartz, Pearson.

### ELECTRICAL AND ELECTRONICS ENGINEERING

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

### ENERGY FROM WASTE (Open Elective – II)

Prerequisite: Renewable Energy Sources, Physics, Environmental Studies

#### Course Objectives:

- To classify solid waste sources
- To identify methods of solid waste disposal
- To study various energy generation methods
- To analyse biogas production methods and recycling of e-waste

#### **Course Outcomes**: Upon the completion of the subject, the student will be able to

- Understand technologies for generation of energy from solid waste
- Compare methods of solid waste disposal
- Identify sources of energy from bio-chemical conversion
- Analyze methods for management of e-waste

#### UNIT- I

Solid Waste Sources Solid Waste Sources, types, composition, Properties, Global warming, Municipal Solid Waste: Physical, chemical and biological properties, Waste Collection and, Transfer stations, Waste minimization and recycling of municipal waste, Segregation of waste, Size Reduction, Managing Waste. Status of technologies for generation of Energy from Waste Treatment and Disposal Aerobic composting, incineration, Furnace type and design, Medical waste /Pharmaceutical waste treatment Technologies, incineration, Environmental impacts, Measures to mitigate environmental effects due to incineration.

#### UNIT - II

Land Fill method of Solid waste disposal Land fill classification, Types, methods and Sitting consideration, Layout and preliminary design of landfills: Composition, characteristics, generation, Movement and control of landfill leach ate and gases, Environmental monitoring system for land fill gases.

#### UNIT - III

Energy Generation from Waste Bio-chemical Conversion: Sources of energy generation, anaerobic digestion of sewage and municipal wastes, direct combustion of MSW-refuse derived solid fuel, Industrial waste, agro residues, Anaerobic Digestion.

#### UNIT - IV

Biogas production, Land fill gas generation and utilization, Thermo-chemical conversion: Sources of energy generation, Gasification of waste using Gasifiers, Briquetting, Utilization and advantages of briquetting, Environmental benefits of Bio-chemical and Thermo- chemical conversion.

#### UNIT - V

E-waste: e-waste in the global context – Growth of Electrical and Electronics Industry in India – Environmental concerns and health hazards – Recycling e-waste: a thriving economy of the unorganized sector – Global trade in hazardous waste – impact of hazardous e-waste in India. Management of e-waste: e-waste legislation, Government regulations on e-waste management – International experience – need for stringent health safeguards and environmental protection laws of India.

### TEXT BOOKS:

- 1. Nicholas P. Cheremisinoff. Handbook of Solid Waste Management and Waste Minimization Technologies. An Imprint of Elsevier, New Delhi (2003).
- 2. P. Aarne Vesilind, William A. Worrell and Debra R. Reinhart. Solid Waste Engineering. Thomson Asia Pte Ltd. Singapore (2002)
- 3. M. Dutta , B. P. Parida, B. K. Guha and T. R. Surkrishnan. Industrial Solid Waste Management and Landfilling practice. Narosa Publishing House, New Delhi (1999).

- 4. "E-waste in India: Research unit, Rajya Sabha Secretariat, New Delhi, June 2011"
- 5. Amalendu Bagchi. Design, construction and Monitoring of Landfills. John Wiley and Sons. New York. (1994)
- 6. M. L. Davis and D. A. Cornwell. Introduction to environmental engineering. Mc Graw Hill International Edition, Singapore (2008)
- 7. C. S. Rao. Environmental Pollution Control Engineering. Wiley Eastern Ltd. New Delhi (1995)
- 8. S. K. Agarwal. Industrial Environment Assessment and Strategy. APH Publishing Corporation. New Delhi (!996)
- 9. Sofer, Samir S. (ed.), Zaborsky, R. (ed.), "Biomass Conversion Processes for Energy and Fuels", New York, Plenum Press, 1981
- 10. Hagerty, D.Joseph; Pavoni, Joseph L; Heer, John E., "Solid Waste Management", New York, Van Nostrand, 1973
- 11. George Tchobanoglous, Hilary Theisen and Samuel Vigil Prsl: Tchobanoglous, George Theisen, Hillary Vigil, Samuel, "Integrated Solid Waste management: Engineering Principles and Management issues", New York, McGraw Hill, 1993.

#### **REFERENCES:**

- 1. C Parker and T Roberts (Ed), Energy from Waste An Evaluation of Conversion Technologies, Elsevier Applied Science, London, 1985
- KL Shah, Basics of Solid and Hazardous Waste Management Technology, Prentice Hall, 2000 3. M Datta, Waste Disposal in Engineered Landfills, Narosa Publishing House, 1997
- 3. G Rich et.al, Hazardous Waste Management Technology, Podvan Publishers, 1987
- 4. AD Bhide, BB Sundaresan, Solid Waste Management in Developing Countries, INSDOC, New Delhi,1983 FUEL CELL AND

#### 5. Google books:

- (i) e-waste Management: From waste to Resource Klaus Hieronymi, Ramzy Kahnat, Eric williams
  - Tech. & Engg.-2013(Publisher: Earthscan 2013).
- (ii) What is the impact of E-waste: Tamara Thompson
- (iii) E-waste poses a Health Hazard: Sairudeen Pattazhy

### 6. Weblinks :

www.unep.org www.routledge.com www.amazon.com www.bookdepository.com www.ecoactiv.com

### ELECTRICAL AND ELECTRONICS ENGINEERING

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

#### DISTRIBUTED GENERATION AND MICROGRID (Open Elective - II)

#### **Course Objectives**

- To illustrate the concept of distributed generation
- To analyze the impact of grid integration.
- To study concept of Micro grid and its configuration
- To find optimal size, placement and control aspects of DGs

#### **Course Outcomes:** Upon the Completion of the course student will be able to

- Find the size and optimal placement DG
- Analyze the impact of grid integration and control aspects of DGs
- Model and analyze a micro grid taking into consideration the planning and operational issues of the DGs to be connected in the system
- Describe the technical impacts of DGs in power systems

#### UNIT - I

Need for distributed generation - Renewable sources in distributed generation - Current scenario in distributed generation - Planning of DGs – Siting and sizing of DGs – Optimal placement of DG sources in distribution systems.

#### UNIT - II

Grid integration of DGs – Different types of interfaces - Inverter based DGs and rotating machine based interfaces - Aggregation of multiple DG units - Energy storage elements - Batteries, ultra-capacitors, flywheels.

#### UNIT - III

Technical impacts of DGs – Transmission systems, Distribution systems, De-regulation – Impact of DGs upon protective relaying – Impact of DGs upon transient and dynamic stability of existing distribution systems.

#### UNIT-IV

Economic and control aspects of DGs – Market facts, issues and challenges - Limitations of DGs - Voltage control techniques, Reactive power control, Harmonics, Power quality issues - Reliability of DG based systems – Steady state and Dynamic analysis.

#### UNIT - V

Introduction to micro-grids – Types of micro-grids – Autonomous and non-autonomous grids – Sizing of micro-grids - Modeling & analysis - Micro-grids with multiple DGs – Micro-grids with power electronic interfacing units - Transients in micro-grids - Protection of micro-grids – Case studies.

### TEXT BOOKS:

- 1. H. Lee Willis, Walter G. Scott, 'Distributed Power Generation Planning and Evaluation', Marcel Decker Press, 2000.
- 2. M.Godoy Simoes, Felix A.Farret, 'Renewable Energy Systems Design and Analysis with Induction Generators', CRC press.
- 3. Robert Lasseter, Paolo Piagi, ' Micro-grid: A Conceptual Solution', PESC 2004, June 2004.
- 4. F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Energy Resources', International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on June 19-23, 2005.
- 5. Z. Ye, R. Walling, N. Miller, P. Du, K. Nelson, 'Facility Microgrids', General Electric Global Research Center, Niskayuna, New York, Subcontract report, May 2005.

### ELECTRICAL AND ELECTRONICS ENGINEERING

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

#### **RELIABILITY ENGINEERING (Open Elective – II)**

#### **Course Objectives:**

- To comprehend the concept of Reliability and Unreliability
- Derive the expressions for probability of failure, Expected value and standard deviation of Binominal distribution, Poisson distribution, normal distribution and weibull distributions.
- Formulating expressions for Reliability analysis of series-parallel and Non-series parallel systems
- Deriving expressions for Time dependent and Limiting State Probabilities using Markov models.

Course Outcomes: Upon the completion of this course, the student will be able to

- Apply fundamental knowledge of Reliability to modeling and analysis of seriesparallel and Non-series parallel systems.
- Solve some practical problems related with Generation, Transmission and Utilization of Electrical Energy.
- Understand or become aware of various failures, causes of failures and remedies for failures in practical systems.

#### UNIT – I

Rules for combining probabilities of events, Definition of Reliability. Significance of the terms appearing in the definition. Probability distributions: Random variables, probability density and distribution functions. Mathematical expectation, Binominal distribution, Poisson distribution, normal distribution, weibull distribution.

#### UNIT - II

Hazard rate, derivation of the reliability function in terms of the hazard rate. Failures: Causes of failures, types of failures (early failures, chance failures and wear-out failures). Bath tub curve. Preventive and corrective maintenance. Modes of failure. Measures of reliability: mean time to failure and mean time between failures.

### UNIT - III

Classification of engineering systems: series, parallel and series-parallel systems- Expressions for the reliability of the basic configurations.

Reliability evaluation of Non-series-parallel configurations: Decomposition, Path based and cutest based methods, Deduction of the Paths and cutsets from Event tree.

#### UNIT - IV

Discrete Markov Chains: General modeling concepts, stochastic transitional probability matrix, time dependent probability evaluation and limiting state probability evaluation of one component repairable model. Absorbing states.

Continuous Markov Processes: Modeling concepts, State space diagrams, Stochastic Transitional Probability Matrix, Evaluating time dependent and limiting state Probabilities of one component repairable model. Evaluation of Limiting state probabilities of two component repairable model.

#### UNIT - V

Approximate system Reliability analysis of Series systems, parallel systems with two and more than two components, Network reduction techniques. Minimal cutest/failure mode approach.

#### TEXT BOOKS:

- 1. "Reliability evaluation of Engineering systems", Roy Billinton and Ronald N Allan, BS Publications.
- 2. "Reliability Engineering", Elsayed A. Elsayed, Prentice Hall Publications.

- "Reliability Engineering: Theory and Practice", By Alessandro Birolini, Springer Publications.
   "An Introduction to Reliability and Maintainability Engineering", Charles Ebeling, TMH Publications.
   "Reliability Engineering", E. Balaguruswamy, TMH Publications.

#### MECHANICAL ENGINEERING

#### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

#### ENGINEERING RESEARCH METHODOLOGY (Open Elective – II)

#### UNIT - I

**Research Methodology:** Objectives and Motivation of Research, Types of Research, Research Approaches, Significance of Research, Research Methods verses Methodology, Research and Scientific Method, Important of Research Methodology, Research Process, Criteria of Good Research, Problems Encountered by Researchers in India, Benefits to the society in general.

**Defining the Research Problem:** Definition of Research Problem, Problem Formulation, Necessity of Defining the Problem, Technique involved in Defining a Problem.

#### UNIT - II

**Literature Survey**: Importance of Literature Survey, Sources of Information, Assessment of Quality of Journals and Articles, Information through Internet. **Literature Review**: Need of Review, Guidelines for Review, Record of Research Review.

#### UNIT - III

**Research Design:** Meaning of Research Design, Need of Research Design, Feature of a Good Design Important Concepts Related to Research Design, Different Research Designs, Basic Principles of Experimental Design, Developing a Research Plan, Design of Experimental Set-up, Use of Standards and Codes.

#### UNIT - IV

**Data Collection**: Collection of primary data, Secondary data, Data organization, Methods of data grouping, Diagrammatic representation of data, Graphic representation of data. Sample Design, Need for sampling, some important sampling definitions, Estimation of population, Role of Statistics for Data Analysis, Parametric V/s Non Parametric methods, Descriptive Statistics, Measures of central tendency and Dispersion, Hypothesis testing, Use of Statistical software.

**Data Analysis:** Deterministic and random data, Uncertainty analysis, Tests for significance: Chisquare, student's t-test, Regression modeling, Direct and Interaction effects, ANOVA, F-test, Time Series analysis, Autocorrelation and Autoregressive modeling.

#### UNIT - V

**Research Report Writing**: Format of the Research report, Synopsis, Dissertation, Thesis its Differentiation, References/Bibliography/Webliography, Technical paper writing/Journal report writing, making presentation, Use of visual aids. **Research Proposal Preparation**: Writing a Research Proposal and Research Report, Writing Research Grant Proposal.

- 1. C.R Kothari, Research Methodology, Methods & Technique; New Age International Publishers, 2004
- 2. R. Ganesan, Research Methodology for Engineers, MJP Publishers, 2011
- 3. Ratan Khananabis and Suvasis Saha, Research Methodology, Universities Press, Hyderabad, 2015.
- 4. Y. P. Agarwal, Statistical Methods: Concepts, Application and Computation, Sterling Publs., Pvt., Ltd., New Delhi, 2004
- 5. Vijay Upagade and Aravind Shende, Research Methodology, S. Chand & Company Ltd., New Delhi, 2009
- 6. G. Nageswara Rao, Research Methodology and Quantitative methods, BS Publications, Hyderabad, 2012.
- 7. Naval Bajjai "Business Research Methods" Pearson 2011.
- 8. Prahalad Mishra " Business Research Methods " Oxford 2016

#### COMPUTER SCIENCE AND ENGINEERING

#### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

#### MACHINE LEARNING (Open Elective - II)

#### Prerequisites:

- Data Structures
- Knowledge on statistical methods

#### Course Objectives:

- This course explains machine learning techniques such as decision tree learning, Bayesian learning etc.
- To understand computational learning theory.
- To study the pattern comparison techniques.

#### **Course Outcomes:**

- Understand the concepts of computational intelligence like machine learning
- Ability to get the skill to apply machine learning techniques to address the real time problems in different areas
- Understand the Neural Networks and its usage in machine learning application.

#### UNIT - I

**Introduction** - Well-posed learning problems, designing a learning system Perspectives and issues in machine learning

**Concept learning and the general to specific ordering** – Introduction, A concept learning task, concept learning as search, Find-S: Finding a Maximally Specific Hypothesis, Version Spaces and the Candidate Elimination algorithm, Remarks on Version Spaces and Candidate Elimination, Inductive Bias.

**Decision Tree Learning** – Introduction, Decision Tree Representation, Appropriate Problems for Decision Tree Learning, The Basic Decision Tree Learning Algorithm Hypothesis Space Search in Decision Tree Learning, Inductive Bias in Decision Tree Learning, Issues in Decision Tree Learning.

### UNIT - II

**Artificial Neural Networks** Introduction, Neural Network Representation, Appropriate Problems for Neural Network Learning, Perceptions, Multilayer Networks and the Back propagation Algorithm. Discussion on the Back Propagation Algorithm, An illustrative Example: Face Recognition

**Evaluation Hypotheses** – Motivation, Estimation Hypothesis Accuracy, Basics of Sampling Theory, A General Approach for Deriving Confidence Intervals, Difference in Error of Two Hypotheses, Comparing Learning Algorithms.

### UNIT - III

**Bayesian learning -** Introduction, Bayes Theorem, Bayes Theorem and Concept Learning Maximum Likelihood and Least Squared Error Hypotheses, Maximum Likelihood Hypotheses for Predicting Probabilities, Minimum Description Length Principle, Bayes Optimal Classifier, Gibs Algorithm, Naïve Bayes Classifier, An Example: Learning to Classify Text, Bayesian Belief Networks, EM Algorithm.

**Computational Learning Theory** – Introduction, Probably Learning an Approximately Correct Hypothesis, Sample Complexity for Finite Hypothesis Space, Sample Complexity for Infinite Hypothesis Spaces, The Mistake Bound Model of Learning.

**Instance-Based Learning** – Introduction, k-Nearest Neighbor Learning, Locally Weighted Regression, Radial Basis Functions, Case-Based Reasoning, Remarks on Lazy and Eager Learning.

### UNIT - IV

**Pattern Comparison Techniques**, Temporal patterns, Dynamic Time Warping Methods, Clustering, Codebook Generation, Vector Quantization

**Pattern Classification:** Introduction to HMMS, Training and Testing of Discrete Hidden Markov Models and Continuous Hidden Markov Models, Viterbi Algorithm, Different Case Studies in Speech recognition and Image Processing

## UNIT - V

**Analytical Learning** – Introduction, Learning with Perfect Domain Theories : PROLOG-EBG Remarks on Explanation-Based Learning, Explanation-Based Learning of Search Control Knowledge, Using Prior Knowledge to Alter the Search Objective, Using Prior Knowledge to Augment Search Operations.

**Combining Inductive and Analytical Learning –** Motivation, Inductive-Analytical Approaches to Learning, Using Prior Knowledge to Initialize the Hypothesis.

### TEXT BOOKS:

- 1. Machine Learning Tom M. Mitchell,- MGH
- 2. Fundamentals of Speech Recognition By Lawrence Rabiner and Biing Hwang Juang.

#### **REFERENCE BOOK:**

1. Machine Learning : An Algorithmic Perspective, Stephen Marsland, Taylor & Francis